Unsupervised target detection in hyperspectral images using projection pursuit

نویسندگان

  • Shao-Shan Chiang
  • Chein-I Chang
  • Irving W. Ginsberg
چکیده

In this paper, we present a projection pursuit (PP) approach to target detection. Unlike most of developed target detection algorithms that require statistical models such as linear mixture, the proposed PP is to project a high dimensional data set into a low dimensional data space while retaining desired information of interest. It utilizes a projection index to explore projections of interestingness. For target detection applications in hyperspectral imagery, an interesting structure of an image scene is the one caused by man-made targets in a large unknown background. Such targets can be viewed as anomalies in an image scene due to the fact that their size is relatively small compared to their background surroundings. As a result, detecting small targets in an unknown image scene is reduced to finding the outliers of background distributions. It is known that “skewness,” is defined by normalized third moment of the sample distribution, measures the asymmetry of the distribution and “kurtosis” is defined by normalized fourth moment of the sample distribution measures the flatness of the distribution. They both are susceptible to outliers. So, using skewness and kurtosis as a base to design a projection index may be effective for target detection. In order to find an optimal projection index, an evolutionary algorithm is also developed to avoid trapping local optima. The hyperspectral image experiments show that the proposed PP method provides an effective means for target detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target Detection Improvements in Hyperspectral Images by Adjusting Band Weights and Identifying end-members in Feature Space Clusters

          Spectral target detection could be regarded as one of the strategic applications of hyperspectral data analysis. The presence of targets in an area smaller than a pixel’s ground coverage has led to the development of spectral un-mixing methods to detect these types of targets. Usually, in the spectral un-mixing algorithms, the similar weights have been assumed for spectral bands. Howe...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing

  The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2001